Vision Research 48 (2008) 2689-2695

¢ VISION

Contents lists available at ScienceDirect RESEARCH

Vision Research

journal homepage: www.elsevier.com/locate/visres

Contextual effects on decision templates for parafoveal orientation identification

Isabelle Mareschal *, Michael J. Morgan, Joshua A. Solomon

Department of Optometry and Visual Science, City University, London EC1V OHB, UK

ARTICLE INFO ABSTRACT

Article history:
Received 6 June 2008
Received in revised form 7 August 2008

When a peripherally viewed stimulus is presented with flankers, observers’ acuity for shape generally
decreases. We wondered whether a change in the locus of information accrual accompanied these per-
formance deficits and employed psychophysical reverse correlation to find out. Surrounding the target
(a near-vertical Gabor patch) with a vertical grating caused a slight elongation and a rotation in the deci-
sion templates for orientation identification. We also found that the contrast required to maintain crite-
rion performance in this condition was actually lower than it was in a target-alone condition. However,
this facilitation decreased with practice, due to perceptual learning in the target-alone condition. Unlike a
continuous surround, isolated flanks elevated contrast thresholds, but decision templates were similar
with both of these contexts. The rotation of decision templates (off-orientation looking) suggests that
performance is limited by additive internal noise. We speculate that this noise can be reduced when
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the target is easily segregated from its surround.
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1. Introduction

Observers are able to make very fine orientation discrimina-
tions even though orientation tuned channels have broad band-
widths. Regan and Beverley (1985) proposed that orientation
discrimination does not rely on the output of the most active chan-
nel, but rather on the relative response of a group of channels to a
given stimulus. By monitoring relative activities, orientation can be
accurately encoded without being confounded with signal strength
(i.e. contrast).

For stimuli presented outside the fovea, it has been found that
the discrimination of orientation is usually hindered by the pres-
ence of nearby stimuli. This effect of visual context is known as
crowding (e.g. Bouma, 1970; Chung, Levi, & Legge, 2001; Levi,
Klein, & Hariharan, 2002; Loomis, 1978; Parkes, Lund, Angelucci,
Solomon, & Morgan 2001; Pelli, Palomares, & Majaj, 2004; Wilkin-
son, Wilson, & Ellember, 1997). Crowding can be distinguished
from contrast masking because (i) the effects of flankers are
spatially anisotropic (Feng, Jiang, & He, 2007; Livne & Sagi, 2007;
Petrov, Popple, & Mc Kee, 2007), (ii) effects increase with eccentric-
ity, but remain independent of stimulus size (Chung et al., 2001;
Levi et al., 2002), and (iii) unlike masking, crowding leaves detec-
tion relatively unimpaired (Pelli et al. 2004).

There are many accounts for crowding, but the most common
explanation is that it reflects an inappropriate combination of fea-
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tures from the target and the flanks, occurring at a second stage of
image processing, the “integrator” unit (i.e. Levi et al., 2002; Parkes
et al. 2001; Pelli et al. 2004). An alternative account of crowding is
that it results from the limited spatial resolution of attention
(He, Cavanaugh, & Intriligator 1996; Strasburger, 2005; Tripathy
& Cavanaugh, 2002). It is worth noting that these two accounts
are not mutually exclusive.

An increasingly popular way to characterize visual selectivity is
to correlate the behaviour of a sensory system with some stochas-
tically varying stimulus attribute (typically the luminance of pixels
in white noise). This technique has been used both in physiology to
derive a neuron’s receptive fields (DeAngelis, Ohzawa, & Freeman
1993; Emerson, Bergen, & Adelson 1992; Ohzawa, DeAngelis, &
Freeman 1997; Ringach, Hawken, & Shapley 1997) and in psycho-
physics to determine an observer’s “perceptive field” or decision
template, i.e. the region in space that determines performance
(e.g. Abbey & Eckstein, 2002; Ahumada, 2002; Dakin & Bex,
2003; Gold, Murray, Bennett, & Sekuler, 2000; Levi & Klein, 2002;
Mareschal, Dakin, & Bex 2006; Murray, Bennet, & Sekuler 2002;
Nandy & Tjan, 2007; Neri & Heeger, 2002; Solomon, 2002). In
psychophysics, unbiased estimates of the decision template can
be derived using the classification-image analysis (Ahumada,
1996; Abbey, Eckstein, & Bochud, 1999).

Here we employ classification-image analysis to determine how
the decision template for parafoveal orientation discrimination is
affected by visual context. In particular, we examined classifica-
tion-images to see whether they included the nearby stimuli, as
would be expected from the feature-combination account of
crowding. Our most surprising result was that some very salient
visual contexts, which completely surrounded the target, actually
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helped, rather than hindered parafoveal orientation discrimination
by lowering observers’ decision noise.

2. Methods
2.1. Observers

Two of the authors (I.M. and J.A.S.) and one naive subject (A.T.)
served as observers. All wore optical correction as necessary.

2.2. Apparatus and stimuli

An Apple Macintosh G4 computer running MarLas™ (MathWorks
Ltd.) was used for stimulus generation, experiment control and
recording subjects’ responses. The programs controlling the exper-
iment incorporated elements of the PsychToolbox. Stimuli were
displayed on a ValueVision monitor (1280 x 1024 pixel, frame re-
fresh rate 60 Hz) driven by the computer’s built-in graphics card.
We achieved true 14-bit contrast resolution in grey-scale using a
Bits++ system (Cambridge Research Systems). The display was cal-
ibrated using a photometer and linearised using look-up tables in
software.

2.2.1. Target and noise

In the target-alone condition (Fig. 1a), the stimulus was a
96 x 96 pixel white noise image presented either 5° to the left or
right of fixation for 150 ms. At the viewing distance, one pixel sub-
tended 2.1 arcmin. The luminance of each pixel was uniformly dis-
tributed over either one-fourth (observers .M. and A.T.) or one-half
(J.A.S.) the available range of intensities. In its center was a Gabor
patch, the product of a sinusoidal carrier (2.37 c/deg) and a circular
Gaussian window (with spread ¢ = 0.21°). The carrier always ap-
peared in cosine phase within its window (see Fig. 1a). In this con-
dition, and in all other conditions, the observer’s task was to
determine whether the target Gabor was tilted clockwise or coun-
ter-clockwise by 8 degrees of vertical.

2.2.2. Grating surround

In the surround conditions, the target was surrounded by a
luminance grating. It had the same contrast and spatial frequency
as the target, and a central aperture with a radius of 0.7 °. Since the
orientation and phase of surround stimuli have been found to
influence performance on a number of tasks, such as contour inte-
gration (i.e. Field, Hayes, & Hess, 1993), contrast facilitation (Solo-

No Surround

mon & Morgan, 2000; Williams & Hess, 1998) and apparent
contrast (Cannon & Fullenkamp, 1991) we investigated the role
of these parameters in our surround gratings. The surround grat-
ings were either vertical or horizontal and were fully embedded
within the noise. Four different surround conditions were investi-
gated in separate blocks: target and surround approximately in
phase, target and surround approximately 180 ° out of phase, tar-
get and surround approximately perpendicular, and target and sur-
round approximately in phase with only the target contrast
varying (see Fig. 2 for illustrations). In this last condition, the grat-
ing was held at 25% contrast for observers .M. and A.T. It was held
at 40% contrast for J.A.S. The order of blocks was randomised to
avoid confounding the type of surround with practice and/or
fatigue.

2.2.3. Flanking Gabor and plaid stimuli

In subsequent control conditions to test for crowding using
stimuli embedded in noise, two different types of visual context
were used. The first was similar to that used by Parkes et al.
(2001) and consisted of eight Gabors arranged in a circle around
the target (see Fig. 4 for illustration). Each of these Gabors was
identical to the target, except it was perfectly vertical. Center-cen-
ter spacing of the target and each surround patch was A 2.5,/2 This
spacing was chosen so that the patches would be clearly separate,
but close enough to the target to approximate the distance of the
grating surround. In the second control condition (see Fig. 5 for
illustration), only the two flankers along the horizontal meridian
were used. Each of these two flankers was a plaid; the sum of
two Gabors that were identical to the target, except that were
tilted +22.5° away from vertical. The center-center spacing of the
target and each of these flanks was increased to A 2.5,/2 to avoid
masking. In this one condition, the target and flankers’ spread
was increased to ¢ =0.28°. The contrast of the components was
half that of the target.

2.3. Procedure

We employed a single interval, orientation identification proce-
dure. Observers fixated a small square (2 x 2 pixels) that was pres-
ent throughout stimulus duration. The observers’ task was to
indicate with a key-press whether the target Gabor was tilted
clockwise or counter-clockwise of vertical by 8°. Auditory feedback
followed a response error for observers IM and AT. The contrast of
the target was varied using a staircase procedure that reduced the

Target
corr=0.081

Target
corr=0.090
Surround
corr=0.026

Fig. 1. Classification image technique and fitting procedure. (a) The stimulus was a Gabor oriented +8° of vertical presented alone (top) or with a grating surround (bottom).
(b) Classification images were obtained as the sum of all noise samples leading to a correct response minus noise samples leading to an incorrect response. (c) Since the task is
discrimination between two oriented targets, the optimal template is the difference between the two possible targets. Consequently, classification image data were fit with
the difference of two component templates (one CCW, the other CW), the CCW component is illustrated here (see Mareschal et al. (2006) for details) and (d) Stimuli (two
targets, one surround) with contrast proportional to their correlation with the classification-image shown in (b).
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Fig. 2. Contrast thresholds measured for three observers in the left (square symbols) and right (circle symbols) visual fields. Filled symbols are thresholds obtained without a
surround, open symbols are thresholds measured in the different surround conditions.

contrast by 1/3 dB or increased it by 1dB following a correct or
incorrect response respectively (Kaernbach, 1991; Wetherill & Le-
vitt, 1965). This procedure converges on the stimulus contrast
(threshold) eliciting 75% correct discrimination. Observers com-
pleted 5000 (I.M.), 7000 (A.T.) or 10,000 (J.A.S.) trials in the tar-
get alone condition and 7000 (.M., A.T.) or 10,000 (J.A.S) trials in
target and surround conditions, in blocks of 1000 (.M., A.T.) or
500 (J.A.S).

2.4. Classification images

For a given target orientation, on any given trial, subjects could
make one of two possible responses (clockwise (C) or counter-
clockwise (CC) of vertical) for the two possible target configura-
tions (stimulus clockwise (SC) or stimulus counter-clockwise
(SCC) of vertical). This yields four stimulus-response combinations
(denoted C-SC, C-SCC, CC-SC and CC-SCC). Noise images were
summed according to whether they elicited a correct or incorrect
response (clockwise noise images were flipped about the vertical
axis of symmetry, so that all decision templates appear to prefer
“counter-clockwise”, see Fig. 1). The difference image between
the correct and incorrect response noise images gives the “correct
response” classification image. In our procedure, correct and incor-
rect noise images were weighted equally.

2.5. Parameter fitting procedure

We fit a 4-parameter decision template to the classification im-
age from each observer in each condition. The fitting procedure has
been described elsewhere (Mareschal et al., 2006) and is formed by
taking the difference between one Gabor with a Counter-CW tilt
and another Gabor with a CW tilt. In Mareschal et al., a weighted
difference between the two Gabors was taken, where a weight
w=1 indicates that the decision template is a pure Gabor;
w = 0.5 indicates an equal contribution from the two component
templates, giving the decision template a checkerboard appear-
ance. In this fitting procedure, we kept the contribution of the
two components equal. The two component Gabors were con-
strained to have equal-but-opposite tilts, equal spatial frequencies
and equal spatial spreads, but the spread along the carrier g, was
allowed to differ from the spread across a,. Error bars containing
the 95% confidence intervals for each parameter were derived
using a bootstrapping procedure (Mareschal et al., 2006).

If performance were solely limited by stimulus noise, the most
efficient decision template would be identical to the difference be-
tween the CCW and CW targets. Specifically, if we use the vector w;
to denote this ideal template, then

E((w,s))
Var((w;s))

where (w,s) denotes the inner product between template w and
stimulus s. However, if performance were limited by a stimulus-
independent perturbation of this inner product (i.e. decision noise),
then the denominator would not matter, and the best template
would be the one that maximized |E({w,s))|, the absolute covari-
ance between template and stimulus.

W; = arg max
w

) (1)

3. Results
3.1. Contrast thresholds

Contrast thresholds taken as the average of all reversals occur-
ring over the last 100 trials in each run, averaged over all runs for
each observer are plotted in Fig. 2. We were surprised to find that,
for LM. and ].A.S., the contrast thresholds measured without a sur-
round (filled symbols) were higher than those measured with a
surround. (The absolute thresholds for J.A.S. are higher since his
noise mask was 50% contrast.) There was no effect of surround
on A.T.’s threshold. This indicates that there was no crowding in
the presence of our surround.

Also, thresholds measured for .M. and J.A.S. showed differences
between the left and right visual fields. For .M., thresholds were
always higher in the left visual field (square symbols), whereas
the contrary was true for J.A.S. (circles) except in the target-alone
condition. A.T. showed no systematic change in his thresholds. Be-
cause of these differences, the left and right visual field data were
kept separate.

3.2. Decision templates

In order to determine whether the changes in contrast thresh-
olds were related to the observers using different templates to per-
form each task, we fit decision templates to the classification-
images. Parameter values for these templates are shown in
Fig. 3a. Notice that when the target was presented alone (filled
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Fig. 3. (a) Estimates of parameters of best-fitting component templates for three observers for stimuli presented in the right visual field (white) and left visual field (grey).
Dashed lines are the veridical values of the target. IM ran all conditions, JAS and AT ran a subset of the surround conditions. (b) Maximum covariance between the target and
template as a function of the different template parameters. Dashed red line corresponds to the average value for all surround conditions, blue for the target alone conditions
(For interpretation of colour mentioned in this figure, the reader is referred to the web version of this article.).

symbols) the estimates of all template parameters were similar in
both visual fields for the three subjects. This is consistent with the
target-alone thresholds being relatively similar in both visual
fields. Adding a surround increased the variability between the left
and right visual fields, perhaps reflecting biases in observers’ abil-
ity to hold fixation.

The top row plots the estimated orientation of the template.
When the target was presented alone (filled symbols), the tem-
plates’ orientations were more oblique than the actual target ori-
entations. This is consistent with previous findings showing that
when observers perform an orientation discrimination between
two targets separated by a small orientation offset, they use the
outputs of detectors tuned to orientations further away than that
of the target (Mareschal et al., 2006; Solomon, 2002). In this case,
the estimated orientation is approximately 5° more oblique than
the actual orientation of the stimulus in either orientation.

To quantify the potential increase in covariance afforded by this
“off-orientation looking,” in Fig. 3b we illustrate the maximum
possible covariances when each of the four parameters is fixed in
turn, and the others are allowed to vary. For example, the maxi-
mum possible covariance between template and target occurs
when the template’s components are oriented +13° from vertical.
This is very close to the best-fitting orientations, when averaged
across all observers and both visual fields in the target alone con-
dition (dashed blue line).

When a surround was presented with the target, the template
orientation was shifted even further away from its actual orienta-
tion (and also that of the surround), particularly for vertical sur-
rounds. Compared to the target-alone conditions, the estimated
templates (averaged across all surround conditions; dashed red
line) were shifted by a further 5-10°, suggesting observers use
templates whose orientation is suboptimal for the task.
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Target corr=0.066
CCW correlation=0.025
CW correlation=-0.012

Fig. 5. Plaid crowding. (a) Stimulus, (b) classification image in the left and right visual field combined, (c) template fit to classification-image and (d), correlation between the
flanker positions (tested together) and the two different components of the plaid stimulus.

The second row plots the spatial frequency of the template in
the left and right visual fields. For all observers and in all condi-
tions, the spatial frequency is lower than the actual spatial fre-
quency of the target, possibly reflecting off frequency looking.
There does not appear to be any systematic difference between
the different surround and target-alone conditions (nearly all data
points are within the 95% confidence intervals). Note that the max-
imum covariance is near the spatial frequency of the target. In the
presence of a surround, observers’ used templates of a slightly sub-
optimal spatial frequency.

The third and fourth rows plot the vertical and horizontal ex-
tents of the template’s envelope. The envelopes were larger than
the target in all conditions, but only along the vertical dimension:
they appeared elongated. The horizontal spread of the templates
never exceeded the target dimensions. Interestingly, although it
would have been beneficial to pool along the horizontal meridian
to maximize covariance, observers’ failed to do so. Taken together
with the change in the vertical length, this supports the psycho-
physical finding that channels underlying observers’ performance
are elongated (Meese & Hess, 2007; Toet & Levi, 1992).

Finally, in order to estimate the extent (if any) to which observ-
ers incorporated the surround into their decision templates, we
calculated the correlation between observers’ classification-images
to two types of stimuli, either the target-alone stimulus or the sur-
round alone (Table 1).

Table 1

In each condition, the correlation between classification image
and target was significant (p < 0.05) for all three observers, but it
was greatest for observer .M. Correlations between classification
image and surround were significant (in three of four conditions)
only for observer I.M. This can be taken as evidence that she incor-
porated these surrounds into her decision templates. Similar evi-
dence from the other observers may have been obscured by
greater decision noise. Alternatively, they may have actually ig-
nored the surrounds.

3.3. Crowding

Initially, we formulated two hypotheses for why surrounds did
not produce crowding.

a) Although our targets were present on every trial and supra-
threshold, it is conceivable that the surround reduced
observers’ spatial uncertainty by providing a cue to the loca-
tion of the target.

Parkes et al. (2001) documented strong crowding using a
task similar to ours, but there were two major differences.
One was the shape of the visual context. Our grating com-
pletely surrounded the target, whereas they used a ring of
Gabors. The other main difference was that we added noise
to the stimulus.

b

—

Correlations between classification-image (left and right visual fields combined) and target, and classification-image and surround (n.s. next to correlations that were not

significantly different from zero)

Stimulus Condition
Target Target + S, vary target Target + S, vary both Target + OOP S, vary both Target + OOP S, vary both
[ O O O O
LM. Target 0.079 0.090 0.117 0.099 0.099
Surround 0.026 —0.012 n.s. 0.031 0.021
JAS. Target 0.078 0.072 0.086 0.094
Surround 0.007 n.s. 0.013 n.s. —0.011 n.s.
AT. Target 0.057 0.073 0.008
Surround 0.005 n.s. 0.006 n.s.
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To see if any of these factors played a role, we ran a control
experiment, using a ring of Gabors, like Parkes et al., but with noise
added to it.

When Parkes et al.’s (2001) ring of Gabors was used contrasts,
thresholds were significantly higher in both visual fields and for
both observers (p < 0.05) than when the target was presented alone
(Fig. 4). It should be noted that the target-alone thresholds for .M.
are lower than those reported in Fig. 2, though for A.T., the thresh-
olds are the same. IM’s thresholds in this experiment were mea-
sured 3 months after the initial experiment and she displayed
characteristic perceptual learning. JAS was also tested on this
experiment and his thresholds had similarly decreased in the tar-
get-alone condition (from 32% to 22%, both visual fields combined).

The finding here that the ring of Gabors raised thresholds rules
out the role of the white noise in somehow “undoing” crowding.
This is also consistent with Nandy and Tjan (2007) who measured
reliable crowding using a classification image paradigm with letter
stimuli. Also, it should be noted that the ring stimulus should have
provided a robust spatial cue to the target’s position, yet thresholds
were elevated. This result is contrary to the notion that spatial
uncertainty reduction was the reason for lower thresholds with
the grating surround.

Best-fitting templates were similar to the ones obtained with the
grating surround (IM (averaged across both visual fields): 1.85 cpd,
104.5°,0.30° and 0.13°; A.T.: 2.28 cpd, 110°, 0.28° and 0.22°).

3.4. Two flankers

Crowding may occur because decision templates combine fea-
tures from the flankers and the target. Alternatively observers
may simply confuse flankers with the target. Either way, it should
be possible to see some evidence of flankers in the classification-
images. In order to increase the likelihood of this, we reduced
the number of flankers to two. We attempted to maximize crowd-
ing by using plaid flankers, whose component gratings were
roughly aligned with our previously estimated templates (at
+22.5° away from vertical; see Section 2 and Fig. 5a). In a prelimin-
ary experiment, we confirmed that these flankers did significantly
(p <0.01) raise contrast threshold from 8 to 13% for orientation dis-
crimination (+8°), but they did not affect contrast thresholds for
2AFC detection.

Classification images obtained for .M. in the left and right vi-
sual fields were fit separately, then combined and fit again. Flanker
structure is clearly visible in the combined classification-image
(Fig. 5b). Best-fitting templates had a lower spatial frequency
(RVF: 1.9 cpd; LVF: 1.8 cpd), but the Gaussian envelope was less
elongated (RVF: 0.35°; LVF: 0.26°) than in the above experiments.
Template orientations were similar (RVF: 108°; LVF: 103°). The
best-fitting template to the combined (RVF +LVF) classification
image is shown in Fig. 5c. This is in accord with Nandy and Tjan
(2007) who reported that crowding did not affect the classification
image using letter stimuli, although in their experiments they did
not quantify the different classification images.

L.M. was worse when the flankers were present. Conceivably,
help could have come from any noise sample that was negatively
correlated with the flankers, thereby making them less visible.
However, this is not what we found. Only the plaid component
oppositely oriented from the target was negatively correlated
(r=-0.012) with the combined classification image. When a noise
sample made the plaid component of the same orientation sign
more visible, LM. was more likely to respond correctly (see
Fig. 5d). This may have been because she sometimes mistakenly
used a flanker (or one component of a flanker) instead of the target
to perform the task, or possibly because she used a combination of
one (or both) of the flankers with the target.

We also kept the left and right visual fields separate and did not
pool the different target conditions in order to test for visual field
anisotropies (i.e. Bouma, 1973; Feng et al., 2007). This yielded four
classification images (target CW, left visual field; target CCW left
visual field; target CW, right visual field; and target CCW right vi-
sual field). Each of these was correlated with a single flanker in
either the nasal or caudal position (relative to the target), but none
of these correlations were significant.

4. Discussion
4.1. Configuration dependent release from crowding

Crowding occurred when the target was flanked by either two
plaids or a ring of eight Gabors with vertical carriers, but not when
it was wholly surrounded by a vertical grating. This finding is con-
sistent with the growing body of literature that suggests a release
from crowding for salient targets. Several studies (e.g. Felisberti,
Solomon, & Morgan, 2005; Kooi, Toet, Tripathy, & Levi, 1994) have
demonstrated a reduction in crowding when an irrelevant attri-
bute (e.g. colour) is added to the flankers. By showing that perfor-
mance improves with additional distractors that do not share this
attribute with the target, Poder (2006) advanced the argument that
identification mechanisms are selective for generally salient stim-
uli, rather than those with a specific irrelevant attribute. Gheri,
Morgan, and Solomon (2007) confirmed its relationship with the
release from crowding, using an independent measure of target
salience. The most closely related finding to ours is that of Livne
and Sagi (2007), who showed that crowding was reduced or abol-
ished when the flankers were arranged to form a continuous con-
tour. They suggested this configuration results in defining the
target as the only salient region.

4.2. Perceptual templates

As in all classification image analyses (e.g. Ahumada, 1996; Ab-
bey et al., 1999; cf. Solomon, 2002), the decision templates inferred
from our data make sense only within the framework of a linear
classifier. The classifier’s responses are determined by the compu-
tation sgn({w, s) + 17), where the decision noise # is symmetrically
distributed about zero. As noted above (just after Eq (1)), the best
defence against decision noise is to adopt a template whose covari-
ance with the stimulus is high. As shown in Fig. 3b, one way to
maximize covariance is to use large templates. Nonetheless, our
data suggest that surrounds had virtually no effect on template
size. We seem to be stuck with 0.35° along and 0.2° across.

Off-orientation looking is another way to increase the covari-
ance between template and target (Regan & Beverley, 1985; Solo-
mon, 2002). This explains why our observer’s templates were
shifted with respect to the target orientation. Without a surround,
the templates were more oblique than the target by 5-10°, while
the surround shifted them by a further 5-10°. However, the overall
effect of this additional shift on covariance was minimal. Using the
best-fitting parameter values (vertical lines in Fig. 3b), template/
target covariance increased from 0.00766 to just 0.00769 when
surrounds were present. This is nowhere near enough to explain
why contrast thresholds were lower with a surround. Instead,
the linear classifier model leaves only one option: the ratio of deci-
sion noise to template amplitude must have been lower in the
presence of full grating surrounds.

It is unclear how the presence of a surround might lead to a de-
crease in observers’ internal noise. It may be that, via a process of
disinhibition, the surround inhibits vertically tuned detectors
whose inhibitory influence on the CW and CCW detectors would
be reduced, ultimately increasing their signal-to-noise ratios.
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Although this may account for the decreased thresholds, it is un-
clear why this would cause templates to be further shifted in
orientation.

Even in the absence of a surround, three distinct properties
emerge: the templates were consistently shifted in orientation, of
a lower spatial frequency and were elongated compared to the tar-
get. Off-frequency looking may be responsible for the frequency
shift. The (linear) spatial frequency bandwidth of spatial frequency
channels is thought to increase with frequency preference (Losada
& Mullen 1995; Solomon 2000; Wilson, McFarlane, & Phillips,
1983). Since the spectrum of white noise is flat, our stimulus noise
probably masked the higher frequency channels more than the
lower ones. Another possibility is that the visual system shifts to
lower spatial frequencies whenever stimuli are presented outside
the fovea (i.e. even in the absence of noise). Consistent with this
second possibility, Levi and Klein (2002) measured classification
images for position discrimination in the parafovea and found that
they were of a lower spatial frequency than those for position dis-
crimination in the fovea.

The elongation of the template is consistent with several find-
ings regarding the aspect ratio of pattern detectors (Polat & Norcia,
1998; Polat & Tyler, 1999; Toet & Levi, 1992; or see Meese & Hess,
2007 for a review). However, it should be noted that the elongation
of our decision templates might reflect either the structure of a sin-
gle detector or that of an integrator unit with a fixed spatial extent
over which it receives inputs.

5. Uncited reference
(Levi et al., 2002).
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